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  ABSTRACT  

The Aircraft Landing Problem (ALP) is a challenging task for air traffic controllers in an 

airport. ALP is a non-deterministic polynomial-time hard (NP-hard) problem that deals 

with assigning an available runway and a landing time to an arriving aircraft. The landing 

time of each aircraft must be within a stipulated target landing time. If the actual landing 

time deviates from the target landing time, an additional cost will be imposed. This cost is 

determined by the amount of earliness or lateness with respect to the actual landing time. 

ALP can be divided into static and dynamic problems. The static ALP (s-ALP) occurs when 

all the information on aircraft are fixed and there is no change in the information when the 

scheduling process commences. On the other hand, the dynamic ALP (d-ALP) considers 

changes in the information that occur during the scheduling process as new aircraft may 

appear in the radar range. Solving both static and dynamic ALPs aim to minimize the 

overall cost i.e., the deviation from a preferred target time of each aircraft. The complexity 

of the ALP draws the attention of researchers from various research domains to generate a 

robust system that supports air traffic controllers in making the landing decision. Many 

heuristic and metaheuristic approaches have been developed to derive a highly effective 

solution for this complicated problem. The research work presented in this thesis aims to 

build upon the state-of-the-art search methodologies for aircraft scheduling problems by 

investigating the use of the Harmony Search Algorithm (HSA) as a population-based 

algorithm for s-ALP and d-ALP. The research first investigates HSA and incorporates a 

number of rules to control the neighborhood structures employed during the optimization 

process. This contribution systematically avoids the slow convergence problem in the 

traditional HSA algorithm as a result of the random strategy deployed therein. Afterward, 

a hybridization between HSA and Variable Neighborhood Search (VNS) is proposed to 

improve the ability of the HSA in exploring an unvisited region in the search space. 

Moreover, Simulated Annealing (SA) is used to avoid the local optimum. The newly 

proposed algorithm is coded as VNHSA. The VNS replaces the pitch consideration rate 

condition in the improvisation step in the original HSA which ensures the algorithm is not 

stuck in the local optimum. Due to the fact that unpredictable changes might occur during 

the course of an ongoing scheduling process, the applicability of the VNHSA is tested on 

d-ALP. The proposed approaches are tested using well-known datasets from OR-library 

with a range of 10 to 500 aircraft and 1 to 5 runways. Computational results based on 

standard benchmark datasets demonstrate the effectiveness of the proposed algorithm. 

Further evaluations are made through comparisons with the best results from other 

approaches in the scientific literature and statistical tests. The results show that the 

proposed approaches are able to obtain competitive results and can be deployed in practice. 
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ALGORITMA TAMBAHBAIK PENCARIAN HARMONI UNTUK MASALAH 

PENDARATAN PESAWAT 

ABSTRAK 

Masalah Pendaratan Pesawat (MPP) merupakan tugas penting bagi pengawal trafik udara 

di lapangan terbang. MPP adalah masalah NP-sukar yang berkaitan dengan penugasan 

pesawat yang tiba ke landasan yang ada dan waktu pendaratan. Masa pendaratan untuk 

setiap pesawat mesti berada dalam jarak masa yang merangkumi waktu pendaratan sasaran. 

Jika masa pendaratan sebenar menyimpang dari masa pendaratan sasaran, kos tambahan 

akan dikenakan yang ditentukan oleh jumlah keterawalan dan keterlambatan waktu 

pendaratan sebenar. MPP boleh dibahagikan kepada masalah statik dan dinamik. Masalah 

statik ialah apabila semua maklumat tentang pesawat adalah tetap dan tiada perubahan 

maklumat apabila proses penjadualan bermula. Sebaliknya, masalah dinamik menganggap 

perubahan kepada maklumat berlaku semasa proses penjadualan iaitu pesawat-pesawat 

baru mungkin muncul dalam julat radar. Kedua-dua jenis statik dan dinamik MPP (s-MPP 

dan d-MPP) bertujuan untuk meminimumkan kos keseluruhan, iaitu penyimpangan dari 

masa sasaran pilihan setiap pesawat. Kerumitan MPP menarik perhatian penyelidik dari 

pelbagai bidang penyelidikan untuk menghasilkan sistem yang mantap untuk menyokong 

pengawal trafik udara dalam membuat keputusan pendaratan. Banyak pendekatan heuristik 

dan metaheuristik dalam kesusasteraan telah dibangunkan untuk menghasilkan 

penyelesaian yang berkualiti tinggi untuk masalah ini, kerana tahap komplikasi tinggi MPP. 

Kerja penyelidikan yang dibentangkan dalam tesis ini bertujuan untuk membina 

metodologi carian untuk masalah penjadualan pesawat dengan menyiasat penggunaan 

Algoritma Carian Harmoni (ACH) sebagai algoritma berasaskan populasi untuk s-MPP dan 

d-MPP. Penyelidikan pertama menonjolkan penyiasatan ke atas ACH, di mana beberapa 

petua diperkenalkan untuk mengawal struktur kejiranan yang akan digunakan semasa 

proses pengoptimuman berbanding dengan strategi rawak dalam ACH asal yang 

menyebabkan penumpuan algoritma yang lambat. Kedua, untuk meningkatkan keupayaan 

ACH dalam menerokai rantau yang tidak diterokai di ruang carian, hibridisasi antara ACH 

dan Carian Kejiranan Pembolehubah (CKP) diselidiki (dikodkan sebagai CKPH). CKP 

menggantikan keadaan Kadar Pertimbangan Pitch dalam langkah improvisasi dalam ACH 

asal yang membantu mengelakkan daripada mudah terjebak dalam optimum tempatan. 

Oleh sebab perubahan tidak dapat diramalkan berlaku semasa proses penjadualan yang 

berterusan, akhirnya, penerapan CKPH diuji pada d-MPP. Pendekatan yang dicadangkan 

diuji pada dataset yang terkenal dari OR-perpustakaan dengan bilangan pesawat antara 10 

hingga 500, dan bilangan landasan pesawat antara 1 hingga 5. Hasil komputasi berdasarkan 

data penanda aras standard menunjukkan keberkesanan pendekatan yang dikaji di sini pada 

masalah pendaratan pesawat statik dan dinamik. Perbandingan dengan pendekatan lain 

dalam kesusasteraan saintifik menunjukkan bahawa pendekatan yang dicadangkan dapat 

memperoleh hasil yang kompetitif dan dapat dianggap sebagai metodologi yang sesuai 

untuk digunakan. 
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CHAPTER I  

 

 

INTRODUCTION  

1.1 MOTIVATION AND BACKGROUND  

In most activities, human intends to expand the benefit or income and limit the expenses 

or the outcome. To achieve that, optimization approaches are required for better usage 

of the available resources, especially when the resources are limited. Optimization is 

used in engineering, medicine, decision making, modelling, designing, scheduling and 

many other applications. One of the most common optimization problems is 

combinatorial optimization (Koret & Vygen, 2014). In this class of optimization 

problems, there are a large number of solutions and it is very difficult and sometimes 

impossible to find the best solution among the existing solutions. Most Combinatorial 

Optimization Problems (COP), cannot be solved by an exact approach. Furthermore, 

evaluating all the existing solutions is impossible due to the limitation of time and 

memory; an example of such is Traveling Salesman Problem (TSP). Thus, the 

approximation approach is suitable to solve this class of problems (Talbi, 2009).  

One of the foremost vital examples of optimization application is in 

transportation. Over the years, different transportation problems arise as optimization 

problems where there are limited resources available to serve many beneficiaries. 

Transportation problems include vehicle routing, bus transport systems, train transfer 

problem, aircraft take-off and aircraft landing scheduling problem. Among these 

problems, the airport operations problem is considered as an important optimization 

problem due to the high cost associated with the disturbance of the take-off or landing 

of an aircraft. In cases where trips are cancelled, the airline companies compensate the 

costumers by changing the trips or booking new trips. These problems are costly 

especially in the busy airports. Additionally, the airports’ managers attempt to achieve 
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the maximum capacity of runways usage by landing many aircraft in less time to acquire 

more income. In busy airports, the task of generating an efficient schedule for aircraft 

landing is a difficult task because of air traffic and time limitation (Bennell et al., 2013).   

Over the last decades, air traffic experienced tremendous growth. Millions of 

passengers and tons of cargos are conveyed through airspace every year. For example, 

according to Dubai airport official website in January 2016, 7,327,637 passengers travel 

through Dubai airport and 201,483 tons of cargos at their ports 

(“http://www.dubaiairports.ae/corporate/media-centre” 2018). Comparing these with 

the record in the last twenty years, there is a huge increase in the numbers of passengers 

and cargo. This growth in air traffic makes the embarkation and disembarkation very 

critical tasks in the airports. Expanding the existing infrastructures in the airports is 

challenging because of many reasons such as economic, spatial, and political reasons. 

Airports managements seek to optimize runways capacity by generating landing 

schedule for the waiting aircraft having short waiting time as much as possible while 

considering safety requirements. In the last decades, the airport management teams 

followed the First Come First Served (FCFS) approach. This approach fairly schedules 

the landing orders according to the predefined landing time. However, it is not always 

practical, especially in the cases when there are several aircraft waiting to land as it may 

lead to a conflict in the landing order. When more than one aircraft takes the same 

landing time. This results in a long waiting time and increased total cost. Thus, 

researchers use other approaches to generate efficient landing schedule for aircraft 

landing problem based on metaheuristic optimization algorithms. This maximizes the 

throughput of the existing resources (runways) and reduces the cost of long waiting 

time.  

Aircraft landing problem (ALP) received special attention in research recently. 

The first research with a simple formulation and single runway (Roger G. Dear, 1976), 

considered ALP as an optimization problem. ALP occurs when there is a list of aircraft 

waiting for permission to land. In such situations, each aircraft must be assigned a 

certain landing time on the runway. The optimal sequence is to land all the waiting 

aircraft considering aircraft having the shortest waiting time to land. Each pair of aircraft 
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landing on the same runway should be given sufficient separation time to ensure safety. 

ALP can be solved statically when all the aircraft information is available and there is 

no update during the scheduling. On the other hand, it is solved dynamically when new 

aircraft appear during the scheduling process (Bennell et al., 2013). In the last few years, 

different methods have been proposed to solve the ALP such as dynamic programming, 

Mixed-Integer Programming (MIP) Formulation, Branch and Bound algorithms (B&B) 

and Heuristic based-approaches. Using metaheuristic algorithms is an effective 

approach to solving the ALP. This is because such problems are usually large. 

Furthermore, compared with other approaches for solving the ALP, it exhibits an 

efficient performance with a reasonable complexity.  

A metaheuristic algorithm is a high-level search methodology that uses the 

heuristic procedures to comprehensively explore the search space (Talbi, 2009). 

Metaheuristic algorithms are divided into two groups: single-based solution and 

population-based solution. Single-based solution metaheuristics (S-metaheuristic) are a 

class of algorithms that improves one solution during the optimization process by 

waking through the neighborhoods of the search space. The wake is iterated from one 

solution to another to get a better solution. Hill climbing, simulated annealing, Tabu 

search, iterated local search, and guided local search are examples of single-based 

solution. Population-based solution metaheuristic (P-metaheuristic) starts with a set of 

solutions and it iteratively improves the population of solution. Genetic algorithm, 

scatter search, ant colony, and particle swarm optimization are examples of population-

based solution algorithms.  

Metaheuristic and exact methods have been used for solving ALP in the 

literature. Generally, the exact methods are used to solve optimization problems with 

limited sizes (Chong, 2012).  Hence, exact methods are not preferred for solving most 

optimization problems with larger sizes. Conversely, metaheuristic algorithms are the 

suitable choice to handle such optimization problems. Metaheuristic algorithms used to 

solve ALP includes Genetic Algorithm (Hu & Di Paolo, 2008),  Ant Colony (Farah et 

al., 2011a), Scatter Search (Pinol et al., 2006), and Iterated Local Search (Sabar & 

Kendall, 2015). According to (Lieder et al., 2015), the ALP with multiple runways is a 

highly challenging problem and there is no known efficient algorithm to solve this 
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problem. This motivated us to investigate the possibility of new metaheuristic algorithm 

to solve the ALP with multiple runways.  

Relatively, there is a new population-based algorithm known as Harmony 

Search Algorithm (HSA), which can explore the search space. This algorithm has been 

successfully deployed in different combinatorial optimization problems such as 

timetabling (Al-Betar et al., 2012), job shop scheduling (Gao et al., 2016), and vehicle 

routing (Yassen et al., 2015). The most effective approach used to improve the 

performance of harmony search is the modification of parameters tuning methods and 

its hybridization with other algorithms (Alia & Mandava, 2011). HSA has proved to be 

an efficient method in many combinatorial optimization problems (Manjarres et al., 

2013).  

The significance of ALP and the efficiency of HSA motivated us to investigate the 

possibility of using HSA to solve ALP. We conducted a preliminary investigation on 

the use of HS algorithm to solve ALP and examine its performance with respect to 

dynamic ALP. The weakness and strength of the algorithm were reported, and an 

improvement procedure was proposed.  

1.2 PROBLEM STATEMENT  

In the last few decades, ALP attracted more attention in air transportation due 

to the safety and efficiency required for this task. Also, the annual growth rate in air 

transportation is expected to be between three and five percent in spite of the short-term 

economic recession (Mesgarpour, 2012). The increasing traffic in air transportation 

directly affects the airport operations. Also, the growth of air transportation presents a 

significant challenge, especially in the congested airports. ALP is associated with 

assigning an arriving aircraft to an available runway. The landing time for each aircraft 

must be within a time interval encompassing a target landing time. If the actual landing 

time deviates from the target landing time, an additional cost will be imposed. This cost 

is determined by the amount of earliness and lateness of the actual landing time.  
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ALP is a challenging task for air traffic controllers in airports due to the limited 

runways, short time availability, and safety constraints. ALP is a non-deterministic 

polynomial-time hard (NP-hard) problem (Beasley et al., 2003; Girish, 2016; Sabar & 

Kendall, 2015). Due to the complexity of ALP, even in medium-sized instances, there 

is no exact method suitable to solve it in large size instances. According to (Lieder et 

al., 2015), “ To date, no efficient methods have been proposed in the reviewed literature 

for the multi-runway ALP that are capable of solving large problem instances”. 

Therefore, finding the optimal solution by exploring the huge number of possible 

solutions is very difficult if not impossible. This is because exploring the whole solution 

space is a computational task that involves a prohibitive amount of computational time.  

The significance of ALP in real-life applications necessitates developing new 

optimization techniques. Hence, metaheuristic techniques will be appropriate to find a 

high-quality solution within reasonable resources. HSA is a recent meta-heuristic 

population-based optimization algorithm introduced by (Geem et al., 2001). HSA has 

been utilized to tackle several optimization problems and it has continued to be of 

particular interest to researchers (Elyasigomari et al., 2017; Esfahani et al., 2016; 

Keshtegar et al., 2017) for several reasons. In comparison to Genetic Algorithm (GA), 

HSA can overcome the drawback associated with the building block theory of GAs by 

considering all the existing solutions instead of considering only two solutions (parents) 

in its reproduction. Also, it does not require crossover and mutation operators, thus it 

needs less computational effort, in terms of memory and runtime. Additionally, HSA is 

more flexible and has a well-balanced mechanism to improve both global and local 

exploration capabilities in contrast to heuristic techniques.  

Despite significant achievements made to improve the performance of HSA 

technique, researchers still need to overcome its weaknesses such as the HSA’s random 

mechanism in selecting the decision variables in solution improvisation process (Al-

betar, 2010). Unlike PSO which handles a solution vector by unitary rule, HSA adjusts 

each variable independently (Ouyang et al., 2018). This can have a negative effect on 

the convergence speed and the quality of new solutions. Therefore, a solution may be 

discarded iteratively because its quality is worse than the existing solutions in the HM. 

This problem affects the performance of the algorithm as the algorithm continually 
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discards the new solution; implying that HM will not be updated. Slow convergence 

speed is another common weakness of the metaheuristic algorithms. This problem is 

highly influenced by the value of the decision variables in improvising a new solution 

(Siddique & Adeli, 2016).  

Combinatorial optimization problems have extremely difficult constraints and 

variable neighborhood is required to overcome this difficulty efficiently. The 

neighborhood structure directly affects the performance of the optimization algorithm 

for solving any optimization problem. The key challenge of creating neighborhood 

solution is the violation of one or more constraints while solving the optimization 

problem (Hosny & Mumford, 2010). Therefore, a controlled neighborhood search 

operator is essential to guide the search toward unvisited locations within the search 

space. According to (Burke et al., 2010), using more than one neighborhood structure 

during the search offers a great opportunity to escape from local optima. Deeper 

knowledge about the specifics of the problem at hand can help to design very efficient 

neighborhood moves and avoid the unnecessary moves which thereby ensures that there 

are smaller neighborhoods (Yuan et al., 2013). Although the HSA is successfully 

implemented in numerous scheduling problems such as job-machine scheduling (Yuan 

et al., 2013), careful design is required to generate neighborhood solutions. Another 

challenge with using HSA is that it accepts the newly generated solution only if it is 

better than all the existing solutions in the harmony memory. This can make the 

algorithm to stuck in a local optimum. Therefore, an investigation of the HSA that 

accepts the worst solution with certain probability advancing from the principle of 

simulated annealing algorithm is required. 

.  The majority of the research works in evolutionary computation focuses on 

optimization of static problems. However, many real-world optimization problems are 

actually dynamic, and optimization methods capable of continuously adapting the 

solution to a changing environment are needed. Although the success of metaheuristic 

algorithms lies in its ability to tackle various optimization problems, the majority of the 

works on ALP only focus on the static type of the problem. The difficulty of solving 

dynamic optimization problems in conventional metaheuristic algorithm can be tackled 

once the algorithm converges the solution (Ertenlice & Kalayci, 2018). Solving 
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dynamic optimization problems is very challenging due to the fact that the parameter 

values change dynamically during the solving process (Nseef et al., 2016). Moreover, 

the frequency and magnitude of an environmental change pose challenges to dynamic 

optimization. According to the literature, d-ALP has not received as much attention as 

s-ALP. Therefore, this research aims to investigate the performance of the proposed 

metaheuristic algorithm in solving d-ALP.  

1.3 RESEARCH QUESTIONS 

i. How can the guided HSA (coded as GHSA) improve the quality of the solution 

in static ALP, compared with the standard HSA?  

ii. How can the multiple neighborhood structures and acceptance of a worse 

solution (coded as VNHSA) improve the performance of the GHSA in static 

ALP by avoiding being easily trapped in local optimum? 

iii. Is the improved HSA (i.e., VNHSA) applicable to dynamic ALP?  

1.4 RESEARCH OBJECTIVES  

The main goal of this thesis is to develop an efficient metaheuristic algorithm based on 

HSA for solving the ALP. To achieve this goal, the following objectives are outlined:  

i. To develop a guided HSA (GHSA) that can improve the quality of the solution 

in static ALP.  

ii. To replace the pitch adjustment rate (PAR) with a variable neighborhood 

search and the probability of accepting a worse solution which avoids local 

optimum in static ALP to produce VNHSA. 

iii. To add an active window to the VNHSA for dynamic ALP.  
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Table 1.1 Mapping between research questions, research objectives and contribution in this 

thesis. 

1.5 RESEARCH SCOPE 

This research is concerned with the development of an alternative metaheuristic 

algorithm (HSA) to tackle the Aircraft Landing Problem (ALP). The development was 

made by using a guided memory to select the decision variables for improvising a new 

solution. Further improvement was done by using multiple neighborhood structures and 

accepting the worse solution. The capability of the improved algorithm was tested on s-

ALP and d-ALP. The proposed approach was verified on well-known benchmark 

datasets from OR-library site. These datasets have been used in several research articles 

in the literature (e.g., Beasley et al., 2003, 2004; Ghizlane Bencheikh, Boukachour, et 

al., 2013; Girish, 2016).  The results from the proposed approaches were compared with 

Research Question Research objective Contribution 

How can the guided HSA 

(coded as GHSA) improve 

the quality of the solution in 

static ALP, compared with 

the standard HSA?  

To develop a guided HSA 

(GHSA) that can improve 

the quality of the solution in 

static ALP. 

An improved HSA 

(Guided HSA) with 

better quality solution 

(Chapter IV). 

How can the multiple 

neighborhood structures 

and acceptance of a worse 

solution (coded as 

VNHSA) improve the 

performance of the GHSA 

in static ALP by avoiding 

being easily trapped in local 

optimum? 

To replace the pitch 

adjustment rate (PAR) with a 

variable neighborhood 

search and the probability of 

accepting a worse solution 

which avoids local optimum 

in static ALP to produce 

VNHSA. 

An improved VNHSA 

with an acceptance rate 

of worse solution and 

ability to avoid the local 

optimum solution 

(Chapter V). 

Is the improved HSA (i.e., 

VNHSA) applicable to 

dynamic ALP?  

To investigate the 

applicability of the VNHSA 

to dynamic ALP.  

VNHSA solver for d- 

ALP (Chapter VI). 
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state-of-the-art results and statistical tests were carried out to determine the significant 

difference in the obtained results.  

1.6 OVERVIEW OF THE THESIS 

This thesis consists of eight chapters. Chapter I introduces the background of this 

research, the research problem, the problem statement, the research questions, the 

research objectives, the scope of research, and finally overviews this thesis.  Chapter II 

reviews the literature on ALP, the methods used to solve the ALP and the available 

datasets of ALP. It also discusses the metaheuristic algorithms and their variants. 

Harmony search algorithm and the modifications of harmony search algorithm are 

examined. The findings from the literature review are also highlighted.  

Chapter III describes the methodology used in this thesis including the characteristics 

of the dataset used.  

Chapter IV presents the implementation of the basic and guided harmony search 

algorithm for static ALP. This chapter also presents the result of the preliminary 

experiment conducted to determine the appropriate parameter values for HSA. Besides, 

the modified HSA and the rule-based approach are described. This modification 

improves the convergence speed of HSA and the quality of the solution.  

Chapter V describes the second modification on the HSA achieved by 

hybridization with variable neighborhood search (VNS) and worst solution acceptance 

rate. In this modification, the pitch adjustment rate (PAR) which represents a local 

improvement of the newly constructed solution in HSA is replaced with VNS. 

Moreover, in the standard HSA, only solutions of higher quality will be accepted, which 

may lead to a local optimum solution. In this chapter, the HSA algorithm is improved 

by including the acceptance rate for a worse solution to prevent it from being trapped 

in the local optimum solution. Different neighborhood operators were used to visit new 

regions in the search space and to avoid being stuck in local optimum. The modified 

algorithm is codded as VNHSA.  
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Chapter VI investigates the applicability of VNHSA to solving the dynamic 

ALP. In this chapter, the s-ALP is presented, and the formulation of the problem is 

described. The results of VNHSA in s-ALP is reported as well.  

Chapter VII presents the analyses of the proposed approaches. The evaluation 

of the proposed approaches in this thesis is based on the comparison of the modified 

version of the proposed algorithms with state-of-the-art results. Statistical tests are also 

utilized to investigate the significance of the results.  

Finally, Chapter VIII summarizes this thesis and indicates future direction.  

 



 

 

 

 

 

CHAPTER II  

 

 

LITERATURE REVIEW 

2.1 INTRODUCTION  

This chapter presents the background information of the aircraft landing-scheduling 

problem as it relates to the research questions in the previous chapter. The problem 

description and the approaches used to solve the aircraft landing-scheduling issue are 

reviewed. The analyses of recent works in this chapter reveal that a number of issues 

need to be attended to before the research problem is addressed. 

The rest of this chapter is organized as follows: the ALP variants are defined in 

Section 2.2; the formulation of ALP variants is described in Section 2.3; the 

optimization approaches used for ALP are detailed in Section 2.4; findings from the 

literature review on ALP research are revealed in Section 2.5; a review of the HSA and 

its modifications is given in Section 2.6; the justification for choosing HSA for ALP is 

described in Section 2.7 and finally, the summary of the chapter is presented in Section 

2.8. 

2.2 AIRCRAFT LANDING PROBLEM (ALP) 

The air traffic management (ATM) system is responsible for the flow of traveling 

aircraft between the take-off landing areas of two airports. The ATM in an airport traffic 

control tower controls an area of about 5 nautical miles and 3000 ft above ground level 

from the airport. The responsibilities of the control tower are clearance delivery, gate 

hold, ground control, ground planning, and runway control.
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The next controlling area is the terminal airspace control centre, also known as 

the approach control airspace, which handles departures and arrivals of up to 40 nm 

and 10,000 ft from the airport. Meanwhile, the en-route control airspace area handles 

the traffic flow outside the terminal manoeuvring area. All these control areas are shown 

in Figure 2.1. This research focuses on the scheduling of the arriving aircraft in the 

traffic control tower area. This is because of the need for intelligent scheduling 

techniques to support the decision made by air traffic controllers in order to generate 

better schedules for landing aircraft. 

The scheduling of aircraft in airport operation is considered a challenging task 

since the 1960s (Soykan & Rabadi, 2016). As such, researchers in the industry have 

spent considerable effort to find efficient methods to tackle these scheduling operation 

problems. There are several distinct scheduling tasks in airport operation such as staff 

scheduling, aircraft take-off scheduling and aircraft landing scheduling. The focus of 

this thesis is on aircraft landing scheduling.  

 

Figure 2.1 Air traffic control areas (Bennell et al. 2013). 

 Aircraft Landing Problem (ALP) entails the assignment of landing time on 

specific runways to a sequence of aircraft waiting to land on the terminal area. The 

runway is a key point in the aircraft-landing problem. Due to economic, environmental 

and political reasons, it is not always possible to build new runways. Thus, maximizing 

the runway throughput by reducing the delay associated with the circling aircraft 

remains the most viable option. Some airports have only one runway (single runway) 
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while others have more (multiple runways). Some studies consider a single runway 

operation as being particular to landing or take-off while other studies consider both 

scenarios simultaneously.  

Aircraft landing is scheduled at certain time intervals to ensure that safety 

requirements are met. The need for proper time separation necessitates that the different 

characteristics of the aircraft should be considered. For example, large size aircraft need 

more separation time than small size aircraft. The separation time differs for different 

types of aircraft. The aircraft in the landing sequence make wake turbulence from their 

engines while landing on the runway. Trailing aircraft should be far enough from the 

preceding aircraft to avoid the risk associated with wake turbulence. This separation 

time between the aircraft is handled based on the aircraft’ sizes. An illustration of 

aircraft with different sizes in the landing sequence is shown in Figure 2.2. In the figure, 

the separation time between the aircraft depends on the aircraft size. The aircraft in the 

figures are classified into three weight categories (as light, medium and heavy weight) 

and the separation requirements depend on the categories of the aircraft. A heavier 

aircraft trailing a lighter aircraft needs less separation when compared with the reverse 

order as seen in wake vortex separation in Nautical Miles (NM) for different weight 

categories.  

The landing of aircraft is managed by air traffic controller in the terminal area. 

Each aircraft has a predefined target-landing time predicted based on the flight speed. 

The landing time must be bounded within a predetermined earliest and latest time values 

named as Time Window. An aircraft can reach maximum airspeed during its cruise and, 

in such a case, the aircraft can land at an early landing time. On the other hand, if the 

aircraft’s speed is dependent on its flight fuel-efficient airspeed, it will land at the latest 

landing time and can hold for a maximum holding time. 
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Figure 2.2 Separation time for different types of aircraft.  

A change in the predefined information due to change in the cruise speed or hold 

will lead to an extra cost charged as penalty. This penalty is calculated according to the 

deviation from the predefined target or (preferred) landing time as shown in Figure 2.3. 

In the figure, three times (referred to as Earliest, Target and Latest) control the penalty 

cost of the aircraft. The penalty cost depends on the degree of deviation of the aircraft’s 

landing time from its target time. The penalty cost is zero when the aircraft lands at its 

target time. However, when the aircraft lands earlier or later, a penalty cost will be 

charged.  

 

Figure 2.3 Relation between target time and objective function. 
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Research on ALP has two main directions: the first one is focused on finding an 

efficient algorithm to generate the landing schedule, while the second is directed at the 

overall strategies of scheduling automation. This thesis focuses on the first direction 

i.e., generating the landing schedule using metaheuristic algorithms. ALP is regarded 

as a non-deterministic polynomial-time hard (NP-hard) problem (Awasthi et al., 2013). 

ALP is a combinatorial optimization problem that can be solved as a static (off-line) or 

dynamic (on-line) problem. 

2.2.1 Static ALP (s-ALP)   

In s-ALP, there is complete knowledge about the set of aircraft waiting to land. The 

complete information about target landing times and time windows for a given set of 

aircraft is called the schedule. In the planning horizon, schedules are generated for all 

the aircraft at once. Furthermore, no changes are expected in the landing times and the 

constraints will not change during the scheduling process. Most of the works in the 

literature solved the ALP for the static case (Beasley et al., 2003; Pinol et al. 2006)).  

2.2.2 Dynamic ALP (d-ALP)  

In d-ALP, the number of aircraft landing is unknown; the decision of assigning landing 

time and the runway for each aircraft is made as time passes. A new aircraft may appear 

in the radar at the same time when another aircraft is landing, and no further scheduling 

can be made (i.e., frozen). This means that the approaching aircraft is available for 

scheduling at the time of its appearance. Also, it is active for rescheduling up to the 

moment when its landing time is too close to its current time. At this time, no further 

changes are possible, and the aircraft must be fixed in the schedule. Research on d-ALP 

are few as compared with s-ALP.  For a better understanding of d-ALP, we refer readers 

to (Beasley et al., 2004; Ghizlane Bencheikh et al., 2016; Moser & Hendtlass, 2007).   

2.3 ALP FORMULATION  

As mentioned in the previous section, the aircraft landing scheduling problem is a 

combinatorial optimization problem consisting of three main components namely 
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aircraft, runways, and landing time. The objective function is to minimize the total 

penalty associated with the delay of the circling aircraft waiting to land. The problem is 

represented by a set of arriving aircraft and a number of runways. Each aircraft has a 

target-landing time according to its most economical speed and it is assigned to a 

specific runway. 

2.3.1 s-ALP Formulation  

The formulation of s-ALP follows the static single and multiple interdependence 

runway version of ALP. The problem formulation in this thesis conforms with the work 

of Beasley et al. ( 2000).  

a. Notations 

The meanings of the notations used in this thesis are as follows:  

- n: the number of the arrival aircraft. 

- m: the number of runways. 

- Sij: the separation time (Sij > 0) between aircraft i and j when they are assigned 

to same runway. 

- Ti: the preferred landing time (target time) of aircraft i. 

- Ei: the earliest landing time of aircraft i.  

- Li: the latest landing time of aircraft i.  

- C1i: the incurred penalty per unit of time for late landing of aircraft i. 

- C2i: the incurred penalty per unit of time for early landing of aircraft i. 

The most commonly used objective function in the aircraft landing-scheduling 

problem is to minimize the total penalty by reducing the deviation from the target 

landing time with respect to landing before or after the target landing time. The 

objective function is as specified in Equation (2.1).  

                   𝑀𝑖𝑛 𝑓 = ∑ (𝑎𝑖𝐶1𝑖 + 𝑏𝑖𝐶2𝑖)𝑛
𝑖=1    (2.1) 

Subject to:  



17 

 

 

 

 

             Ei< xi<= Li                                 i = 1, 2…,n (2.2) 

              
(𝑥𝑗 −  𝑥𝑖) ≥ 𝑠𝑖𝑗𝛿𝑖𝑗 +  𝑡𝑖𝑗(1 − 𝛿𝑖𝑗) − 𝑀𝑦𝑗𝑖 ,   

                               𝑖, 𝑗 =  1, 2 … , 𝑛,        𝑖 ≠ 𝑗
 
 

 (2.3) 

            𝑦𝑖𝑗 + 𝑦𝑗𝑖  = 1,              i ,j = 1,2…,n,          i ≠ j                                                             (2.4) 

𝛿𝑖𝑗 ≥ 𝑦𝑖𝑟 +  𝑦𝑗𝑟 − 1,        𝑖, 𝑗 =  1,2, … , 𝑛,       𝑖 ≠ 𝑗,      

                                              𝑟 = 1,2, … , 𝑚    

(2.5) 

 ∑ 𝑦𝑖𝑟

𝑚

𝑟=1

= 1                             1, 2, . . , 𝑛   
(2.6) 

   𝑦𝑖𝑗 , 𝑦𝑖𝑟 ,  𝛿𝑖𝑗 ∈  {0,1}                  

  𝑖, 𝑗 = 1,2, … , 𝑛,                       𝑟 = 1,2, … . , 𝑚  

(2.7) 

 

                 𝑥𝑖 , 𝑎𝑖 , 𝑏𝑖 ≥ 0 ,                                       𝑖 =  1,2, … . 𝑛      

 

(2.8) 

b. Decision variables 

- xi: the assigned landing time of aircraft i (1, 2... n). 

- yij: equals 1 if aircraft i is assigned to land before aircraft j. Otherwise it takes 0. 

- yir: equals 1 if aircraft i is scheduled to land on a runway r(r= 1,2,3…,m). 

Otherwise, it takes 0. 

- δij: equals 1 if aircraft i and j are scheduled to land on the same runway. 

Otherwise, it takes 0. 

- ai : the tardiness of landing when an aircraft i scheduled to land after the target 

time, ai= max(0 , xi-Ti). 

- bi: the earliness of landing when an aircraft i is scheduled to land before the 

target time, bi = max (0, Ti-xi).                      
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 Each aircraft must land within the time window as specified in constraint (2.2). 

Constraint (2.3) ensures that the separation time is respected if aircraft i and aircraft j 

landed on the same runway. Constraint (2.4) indicates whether aircraft i lands before j 

or aircraft j lands before aircraft i. Constraint (2.5) ensures that when both aircraft i and 

j are assigned to the same runway, the runways must be identical. Constraint (2.6) 

ensures that each aircraft is allocated to only one runway. Constraint (2.7) ensures that 

the decision variables yij, yir, and δij are binary. Constraint (2.8) ensures that xi, ai, and 

bi are nonnegative. In the above-mentioned formulation, when the number of the 

runways m =1, the ALP will be formulated as a single runway and there is no option of 

selecting multiple runway. This is depicted in Figure 2.4.  

Figure 2.4 Single Runway Solution Format 

The first line in Figure 2.4 represents the aircraft’s ID starting from 1 to N, where 

N is the total number of aircraft. The second line represents the landing time (x) of each 

aircraft in the first line. When the number of runways is more than one, the sequence of 

the solution structure for the runway number of each aircraft will be different. This is 

shown in Figure 2.5, where the first line represents the aircraft ID starting from 1 to N, 

the second line represents landing time (x), and the third line represents the runway 

number R.  

 The number of runways is an important parameter in the literature. ALP is 

solved as a single and multiple runway-scheduling problem. In the case of a single 

runway, all aircraft must be scheduled to land on one runway. Separation time must be 

Figure 2.5 Multiple Runways Solution Structure. 
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considered between each pair of the aircraft depending on the aircraft type or class. In 

the case of multiple runways, the arriving aircraft are scheduled to land on multiple 

runways. Different runway selection mechanisms are considered by different 

researchers. Here, the type of the runway refers to the construction of the runway and 

the operation that can be served on the runway. There are two essential types of 

runways: interdependence and heterogeneous (Lieder & Stolletz, 2016). With 

interdependence runways, the operations on one runway restrict the operations on other 

runway(s). On the other hand, with heterogeneous runways, not all operations can be 

performed on all the runways. Other information about the ALP will be detailed in the 

following subsections. 

2.3.2 d-ALP Formulation  

In the dynamic ALP (d-ALP), the formulation of the problem differs from the static 

case as the number of the aircraft is unknown a priori. The objective function of both 

cases (s-ALP and d-ALP) is the same i.e., to minimize the total penalty by reducing the 

deviation from the target landing time. The same notations are used in both s-ALP and 

d-ALP, except for some additional notations and constraints highlighted as follows:  

a. Notations  

- A: appearance time of aircraft i.  

- C: current time.  

- Fz: freezing time.  

b. Constraints  

In addition to the constraints in s-ALP, d-ALP has the following additional constraints 

which are related to the dynamic environment:  

𝑖 =    {
           1      𝑖𝑓   𝐴𝑖 = 𝐶𝑖          

   0      𝑖𝑓 𝐴𝑗 ≠  𝐶𝑖  
 

 (2.9) 

                     Ci – xi < fzi  (2.10) 
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Constraint (2.9) ensures that the aircraft will be active to scheduling if its appearance 

time Ai is equal to the current time Ci. Constraint (2.10) ensures that aircraft i must be 

frozen when its freezing time fzi is close to the current time. In other words, aircraft i 

will be frozen with there is no swapping or time shifting. In Constraint (2.10), xi is the 

landing time of aircraft i, fzi is the freezing time of aircraft i and Ci is the current time 

of aircraft i.   

2.4 APPROACHES APPLIED TO s-ALP AND d-ALP  

This subsection reviews the approaches used for solving the s-ALP and d-ALP. 

According to the literature, the approaches used for s-ALP and d-ALP can be mainly 

classed as exact approaches and metaheuristic approaches. The literature review in this 

thesis covers the research articles that applied their approaches using OR-Library 

dataset introduced by Beasley (1990). Several researches work in the literature applied 

their methods on this dataset. Additionally, works that used other datasets are reviewed. 

In the next subsections detail these approaches.   

2.4.1 Approaches Applied to s-ALP on OR-Library Dataset 

Here, we review previous studies on s-ALP and highlight the main methodologies used. 

A summary of the methods that have been applied to s-ALP using OR-Library dataset 

is given in Figure 2.6.  

a. Exact Methods  

In exact methods, the proposed algorithms search through the entire search space of the 

problem. The main classes of the exact methods are dynamic programming, branch and 

bound, and constraint programming (Talbi, 2009). These methods are used when the 

algorithm can visit all the search spaces of the problem.  

Dynamic programming is an optimization approach that converts a complex 

problem into a sequence of simpler problems. Its essential characteristic is the 

multistage nature of the optimization procedure. Dynamic programming provides a 
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general structure for considering problems of diverse forms. Within this structure, a 

range of optimization methods can be deployed to solve specific aspects of a more 

general construction. 

Branch and bound algorithm is based on an implicit enumeration of all the 

solutions for the considered optimization problem (Talbi, 2009). This class of 

methodologies is widely used to solve optimization problems within an exact routine. 

In branch and bound methods, the search space is explored by dynamically constructing 

a hierarchy tree, where the source node represents the problem being solved and its 

whole related search space. The leaf nodes are the possible solutions and the inside 

nodes are the sub-problems of the entire solution. The size of the sub-problems is 

gradually reduced as one approach the leaves.  

Ernst et al. (1999) deployed the specialized simplex algorithm as well as the branch and 

bound method to solve s-ALP for single and multiple runways. The specialized simplex 

algorithm was used to find the landing time for each aircraft while the branch and bound 

found the upper and lower bounds. The branch and bound algorithm were then used to 

generate solutions to both single and multiple runway problems. The experiments were 

conducted using 44 aircraft (instances number 1–8).  

ALP was formulated as a mixed-integer zero–one MIP program. It proffers 

solution statically using tree search in Beasley et al. (2000). A single runway 

formulation was initially developed and later extended to multiple runways. The impact 

of such formulation on the derived solution and the solution’s quality was deeply 

discussed. In addition, a heuristic algorithm was used to solve the problem. In both 

cases, 50 aircraft were considered in the evaluation of the proposed algorithms.
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Figure 2.6 A summary of methods applied for s-ALP problem of OR-Library dataset

Methods Applied on s-ALP of OR-Library Dataset 

Exact Method  Heuristic Methods  Metaheuristic Methods  

(Ernst et al. 1999) 

(Beasley et al. 2000) 

(Fahle et al. 2003) 
(Awasthi et al. 2013). 

(Faye, 2015) 

(Farah et al. 2011b) 
(Ghoniem & Farhadi 2015) 

 

Single based algorithms  Population based algorithms  

SA 

ILS 

VNS 

(Ji et al. 2016) 

(Xiangwei et al. 2011) 

  

(Salehipour et al., 2013). 

(Sabar & Kendll, 2015) 

(Dhouib, 2011) 

GA ACO DE 

SS 

(Bencheikh et al., 2013 

(Yu et al., 2011) 

(Dorigo & Blum, 2005) 

(Bencheikh et al., 2009) 

(Farah et al., 2011a). 

(Sabar & Kendall, 2014) 

PSO 

(Pinol et al. 2006) (Girish 2016) 
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Fahle et al. (2003) employed several exact methods for ALP. Particularly, two 

integer programming models, Constraint Programming formulation and Satisfiability 

problem, were used in this work. The results of these methods were compared with each 

other and with local search methods. Approximately fifty aircraft were used in the 

experiments performed. Results confirmed the superiority of the ASP models with 

multiple runways.  

The work of Farah et al. (2011b) consists of two parts. A new modelling method 

was presented for the static single runway ALP based on a quadratic model in the first 

part. The second part used an exact method based on the branch and bound method to 

solve the problem. In the context of modelling, binary variable was used to show the 

first aircraft in the landing sequence while integer variable represented the arrival time. 

The branch and bound method used for the ALP consists of three steps: the initialization 

of the solution, application of the principles of the branch and bound method, and 

attainment of the best solution. Small sized instances were considered as only 44 aircraft 

were used in the experiment.  

Another exact method, named a polynomial exact algorithm, was used for single 

and multiple static ALP in the work by Awasthi et al. (2013). The proposed exact 

algorithm achieves a feasible landing sequence on single or multiple runways and solves 

only the landing time assignment part of the problem. After the proposed algorithm 

completes the initialization step, it reduces the landing time of the aircraft in form blocks 

while maintaining the safety constraints. The authors defined a mathematical procedure 

to continually reduce the assigned landing time. An exception to this procedure is when 

one of the aircraft in the block is scheduled on its early landing time or the safety 

constraint is violated. This experiment considers single and multiple runways 

separately. Approximately 500 aircraft and runways ranging from 1 to 5 (in the case of 

multiple runways) were used in this work. The results obtained were compared with the 

results of Pinol et al. (2006).  

Faye proposed an approximation of the separation time matrix and on the time 

discretization approach to solve ALP (Faye, 2015). In his approach, the separation time 
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is approximated by a rank two matrix. The ALP is stated as a 0-1 integer problem. When 

the separation time matrix is not a rank two matrix, an approximation is made. This 

provides lower bounds or upper bounds depending on the choice of the approximating 

matrix. These bounds were used in a constraint generation algorithm to, optimally or 

heuristically, solve the problem. The results obtained using this exact method were 

compared with the results of Beasley’s work in Pinol et al. (2006). Based on the 

comparison, this approach outperformed Beasley’s work in some scenarios.  

Ghoniem and Farhadi (2015) investigated the computational tractability and the 

relative merits of a 0-1 MIP. A set partitioning formulation was solved using the column 

generation approach for ALP. The proposed method deploys an objective function 

which is slightly different from the other approaches where the objective function is to 

minimize the total weighted start-times. The dataset used includes 10 to 500 aircraft and 

1 to 5 runways. The result, compared with the result of Pinol et al. (2006), shows a clear 

improvement over Pinol et al. (2006).    

b. Heuristic Methods  

A heuristic is a logic-based algorithm considered to work rapidly and deliver very 

efficient solutions but may not be globally optimal. A heuristic based on sliding window 

algorithm adapted from receding horizon control was proposed for ALP (Xiangwei et 

al., 2011). The algorithm starts by sequencing the aircraft (in waiting to land) in the 

FCFS order based on their target landing time. The aircraft are defined in a window and 

scheduled optimally in terms of their landing time. The landing time in this work is a 

key factor of the optimization algorithm. About 500 aircraft and 5 runways were used 

in the experiment. The result, compared with the work in Pinol et al. (2006), showed 

that the sliding window algorithm outperforms the scatter search algorithm and 

bionomic algorithm presented in previous literature in terms of execution times and 

solution values.   

Ji et al. (2016) developed an algorithm named: a sequence searching and 

evaluation algorithm. In this study, the authors classified the different formulation of 

the ALP studied in previous literature. The algorithm tackled the ALP in two parts. 
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First, a group of sequences is generated by ignoring the constraints temporarily. In the 

second part, the landing time is optimized, and the solution is evaluated. Fifty aircraft 

and a runway were used in this study. This work was not compared with the best-known 

result in the literature at that time. 

c. Metaheuristic Methods 

Metaheuristic algorithm is the most successful class of optimization algorithms. In the 

last 30 years, metaheuristic algorithms have been utilized in several optimization 

problems in areas such as engineering design, medical applications and transportation. 

Metaheuristic algorithms are nature-inspired or bio-inspired phenomena. The nature-

inspired algorithms mimic the behaviour of nature while bio-inspired algorithms mimic 

behaviours of humans and lower animals. The two main classes of metaheuristic 

algorithms are single-based solution and population-based solution algorithms.  

The vital features in any metaheuristic algorithm are the abilities to explore the 

search space regions and exploit the specific area for local improvement. Exploration 

and exploitation (some researchers refer to them as diversification and intensification, 

respectively) are the most crucial characteristics in any optimization algorithm. Any 

algorithm with a balanced rate between these two characteristics performs well. There 

are different factors affecting these characteristics from one algorithm to another. The 

single-based algorithm is highly effective in intensifying the search area but poor in 

diversifying it. Conversely, the population-based algorithm performs efficiently with 

respect to search space diversification, but not intensification. Different procedures 

have been proposed to guarantee a balance between these characteristics because the 

absence of one of these characteristics will lead to a convergence problem in the 

algorithm.  

i. Single-Based Metaheuristic Algorithms  

In single-based metaheuristic algorithm (also known as Local Search), one solution is 

improved iteratively to solve the targeted optimization problem. The search for a better 

solution is represented as a walk through the search space using the search operators. 
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The general procedure of the single-based solution algorithms is to iteratively replace 

the current solution when a better solution is obtained through the search process. The 

search operators generate a neighborhood to visit different areas in the search space. 

Next, we review the works on S-ALP using single-based metaheuristic algorithms.  

Simulated Annealing  

Simulated Annealing (SA) is an approach which originates from statistical mechanics. 

It is based on a Monte Carlo model that was used by Metropolis et al. (1953) to simulate 

energy levels in cooling solids (Kirkpatrick et al. 1983). Starting from a random point 

in the search space, a random move is made. A move to a neighbouring point from the 

present solution s0 is recognized if it either enhances the value of the current fitness 

(objective) function or ignores it. If a solution having the worst fitness value is 

generated, the solution is accepted with the probability, P(t) = e-δ/t, that depends on the 

magnitude of the deterioration δ (which the difference in the objective function values 

i.e., δ = f (s)-f (s0)) and temperature t. The function P(t) has a value close to 1 at the 

beginning (because of high temperature), but gradually decreases to zero (when t = 0), 

with the cooling of a solid. Initially, any move is accepted, but as the “temperature” 

reduces, the probability of accepting a negative move is lowered. Negative moves are 

essential to escape from the local minima. However, too many negative moves will 

simply diverge from the global minimum. Unlike the random search, SA handles only 

one candidate solution at a time and does not build up an overall picture of the search 

space. No information is saved from the previous moves to guide the selection of new 

moves. 

SA starts with the initial solution x and improves on it by generating a candidate 

solution 𝑥′. If the quality of solution 𝑥′ is better than x, then it is accepted. Otherwise, 

solution 𝑥′ will be accepted based on the acceptance criterion that depends on a certain 

probability r (r is a random number between 0 and 1). If r is less than the value of 𝑒−𝛥𝐸/𝑇 

(where −𝛥𝐸is the difference between the candidate and the current solutions and T is a 

control parameter called temperature), then the candidate solution is accepted, and the 

temperature is lowered gradually according to a cooling schedule (β is the cooling rate). 

This process is repeated until the termination criterion is reached. 
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A combination of SA with Variable Neighborhood Descent (VND) and Variable 

Neighborhood Search (VNS) was introduced for S-ALP with multiple runways in the 

work of Salehipour et al. (2013). In this work, different neighborhood structures were 

used to improve the solution quality. Both the VND and VNS algorithms were used 

with the neighborhood structure which was controlled by the SA framework to avoid 

trapping in local optima. The dataset used in this work ranged from 10 to 500 aircraft 

and 1 to 5 runways. Furthermore, the s-ALP was solved using an exact method while 

using CPLEX software to measure the performance of the proposed metaheuristic 

algorithms. The results obtained from the combined  algorithms (SA+VND and 

SA+VNS algorithms) and the CPLEX result were compared with the Scatter Search 

result from Pinol et al. (2006). According to the author, that was the first time an optimal 

solution for 100 aircraft was obtained. Prior studies had only achieved optimal solutions 

for a maximum of 50 aircraft.  

Variable Neighborhood Search  

Variable Neighborhood Search (VNS) is a recent metaheuristic algorithm successfully 

verified to tackle combinatorial optimization problems (Gutman et al., 1997). Its basic 

idea is to randomly or systematically explore a set of pre-defined neighborhoods, 

typically arranged one after the other, both in finding local optima as well as escaping 

from them. VNS basically uses the fact that a global optimum links to a local optimum 

for a specific neighborhood. When it deals with different neighborhoods, different 

landscapes in the search space will be generated to improve the chances of finding the 

optimal solution.  

Multi Variable Neighborhood Search was used to solve the ALP with multiple 

runways (Dhouib, 2011). The author followed the procedure of Pinol et al. (2006) to 

represent the solution . Three types of movements were used to improve on the most 

recent solution. These are modifying the landing time of the aircraft, modifying the 

sequence order of the aircraft on each runway, and modifying the runway allocation for 

the aircraft. The objective function used is similar to most related works i.e., to minimize 

the total delay of the aircraft with respect to its target landing time. In this work, multi-

start techniques were used to overcome the problem of diversification in local search 
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algorithms. Another improvement on the proposed algorithm was implemented by 

employing memory to prevent the algorithm from visiting neighborhoods that have 

already been visited with no improvement. The average deviation from the best-known 

result taken from Pinol et al. (2006) is 2.3%, and 2.1% and 1.7 % for Scatter Search and 

Bionomic Algorithm, respectively.  

Iterated Local Search  

Iterated Local Search (ILS) is a single-solution metaheuristic algorithm that iteratively 

finds an optimal solution (Stützle & Ruiz 2018). ILS starts with an initial solution then 

uses a local search algorithm to find a local optimum. Therefore, it is a perturbation 

operator to modify the current local optimum in order to avoid the local optimum and 

to move to alternative point in the search space. 

Sabar and Kendall (2015) proposed an Iterated Local Search with multiple 

perturbation operators and time-varying perturbation strength to solve ALP. The 

success of the proposed algorithm depends on the local improvement. Local optima 

problem is a common drawback for most of the local search algorithms. To solve this 

problem, the author proposed four perturbation operators with a time-varying 

perturbation strength. Variable Neighborhood Decent (VND) algorithm was used for 

the local search procedure. In this work, the initial solution was generated using the 

Randomized Greedy (GR) heuristic. Then, four neighborhood structures were used for 

the local search result improvements while considering swaps and moves. Afterward, 

the Perturbation phase was invoked. This phase involves four different perturbation 

operators including swaps and moves. The dataset instances used in this work range 

from 10 to 500 aircraft and 1 to 5 runways. The results of this work were compared in 

terms of the effectiveness of the perturbation operators on the performance of the 

proposed ILS, where the ILS was tested with each perturbation operator separately. 

Additionally, the result was compared with different state-of-the-art references by (A. 

T. Ernst et al., 1999a; Salehipour et al., 2013) in terms of the gap from the best-known 

values (BKV) works such as Pinol et al. (2006). The author reported that this work gives 

new best results in 16 out of 49 instances. A comparatively equal performance was 

achieved for the remaining 33 instances.  
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ii. Population-Based Metaheuristic and Hybrid Algorithms 

In population-based metaheuristic algorithms (also named as Global Search), the search 

algorithm starts by populating the solutions and iteratively improving the quality of this 

population. This is achieved by generating a new population and integrating it with the 

old one based on search operators. Names of the algorithms usually come from a 

specific behaviour or phenomena. Genetic algorithms, evolutionary algorithms, ant 

colony, scatter search, particle swarm optimization and bee colony are examples of this 

class of algorithms.  

Recently, another class of optimization had emerged from the combination of 

two or more algorithms known as hybrid algorithms. In the hybridization of two or more 

algorithms, an algorithm is employed to do a specific procedure in cooperation with 

another algorithm. The idea behind the hybridization is to exploit the strength of an 

algorithm to treat the weakness of the other algorithm. An example of hybridization is 

the use of a local search algorithm to increase the intensification of the global search 

algorithm. In this section, the frequently used algorithms and research works on s-ALP 

using the population-based metaheuristic algorithms are methods discussed. Besides, 

an exposition is given on the hybrid methods. 

Genetic Algorithm  

Genetic Algorithm (GA) represents one of the most known metaheuristic algorithms 

and was introduced by Goldberg & Holland (Holland 1992). GA has been very popular 

as it is one of the earliest discovered methods capable of generating efficient solutions 

for highly complicated optimization algorithms within a reasonable time. The main 

principle of GA is the survival of the fittest, sometimes called natural selection, where 

the best solutions are allowed to breed with each other. The general procedure of GA 

begins either with a population (P) of solutions created arbitrarily or via a specific 

version of heuristic algorithms. The fitness of these solutions is then calculated. 

Subsequently, the process of selection according to the fitness value is carried out to 

choose two solutions as the parents.  
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Bencheikh et al. (2013) proposed a hybrid of two metaheuristic algorithms to 

solve the static ALP with multiple runways. The author reported that the best solution 

for ALP was obtained by hybridizing algorithms and not by using a single algorithm. 

Genetic Algorithm (GA) and Tabu Search (TS) algorithm were used in the proposed 

work with different hybridization scenarios which included the use of TS to improve 

the solution obtained after the selection stage in GA. In addition, crossover and mutation 

process were also utilized to improve the solutions. The data used in the experiment 

ranged from 10 to 500 aircraft and 1 to 5 runways. The result obtained from the 

proposed approach was compared with the work by Pinol et al. (2006).   

GA with Cellular Automation (CA) was introduced for modelling the ALP (Yu 

et al., 2011). This work was achieved in several steps. CA and GA were used to generate 

and optimize the landing sequence, respectively. The GA deploys a mutation operator 

for optimization. Also, a Relaxation Operator (RO) was used to generate the landing 

time for the obtained landing sequence from CA. A total of 13 datasets were used with 

a single runway in the experiment. The result obtained was compared with the result of 

Pinol et al. (2006). For the large size instances (Instance 9- 13), some of the instances 

performed better than Pinol et al. (2006).  

Ant Colony Optimization  

Ant Colony Optimization (ACO) is a population-based metaheuristic algorithm inspired 

by the movements of ants during their search for food (Dorigo & Blum, 2005). The 

concept of the algorithm entails cooperation and the sharing of information to find the 

shortest path towards the source of food. The ants use a chemical pheromone trail on 

the route to the source of food so as to guide the other ants to go along the same way 

and to avoid unknown routes. The level of the chemical pheromone indicates the 

distance of the route towards the food source. As a metaheuristic algorithm, ACO 

initializes the population of solution (ants) either randomly or heuristically. The 

pheromone is initially set as a small constant value and is updated according to the 

quality of solution achieved during the search process. This process is iterated until the 

stopping criteria are achieved. 
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In the study of Bencheikh et al. (2009), two population-based metaheuristic 

algorithms were combined to solve the ALP namely, the ACO algorithm and the GA. 

The ACO was used to generate the initial population and GA was used for the 

improvement process. The purpose of using ACO is to generate high-quality initial 

population because the GA performance strongly depends on the quality of the initial 

population. The author formulates the ALP as a job shop scheduling problem. In this 

respect, static ALP with multiple runways was solved. The result was evaluated using 

50 aircraft (instances 1-8). The obtained results were compared with the optimal 

solution reported in earlier works.  

 ACO algorithm was proposed to solve the ALP for multiple runways (Farah et 

al., 2011a). In the thesis, a static single runway problem was solved. The approach 

deploys the quadratic model to describe the problem. It was solved using ACO, 

modelled as a set of ants (solutions) moving through the ALP stats. Each solution has 

two vectors representing the landing sequence and the landing time. The objective 

function was to minimize the total delay of the arriving aircraft. The total number of 

aircraft used in the work is approximately 150 aircraft (instances Airland1 to 

Airland10).  

Differential Evolution 

Differential Evolution (DE) is a population-based algorithm introduced by Storn and 

Price (1997). DE was first proposed to deal with continuous optimization problems or 

to optimize real parameter and real valued functions. The principle of DE is based on 

two main operators (mutation and crossover). The mutation operator selects different 

solutions from the population and integrates them to produce a new solution. Then, the 

produced solution is combined with the initial solution based on the crossover operator. 

If the quality of the new solution is better than the initial solution, it will be added to 

the new population. 

In the study of Sabar and Kendall (2014), the Hybrid Differential Evolution 

(DE) and Simple Descent (SD) Algorithms were implemented to solve the ALP. The 

nature of the DE algorithm is that it deals with continuous optimization problems and 
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thus cannot be used directly to solve the ALP. In this respect, the authors proposed a 

new representation method for the decision variables of the ALP. The integer part 

represents the number of runways and the fraction represents the order by which the 

aircraft land on the runway. The first step involves representing the solution using DE. 

This necessitates that the number of runways are represented using decision variables. 

Note that the aircraft land on these runways randomly. In the next step, the aircraft 

sequence on each runway was sorted in ascending order and was given landing time 

based on their target landing time.  

Commonly, DE improvement depends on the crossover and mutation which 

may negatively affect the quality of the solution in ALP as small movements in the 

order of aircraft can cause significant changes. Thus, after deploying DE for crossover 

and mutation, SD was used to improve the solution. The improvement in SD was 

implemented by examining the neighborhoods using move operators. By combining the 

proposed algorithms, the DE explores the search space efficiently while SD exploits it. 

The proposed approach was tested using all the instances of the dataset in the 13 files 

with 500 aircraft and 5 runways. The obtained results were compared in two facets. In 

the first, the DE performance was compared with DE-SD. The second aspect of the 

comparison was made to the works by Salehipour et al. (2013) and Pinol et al. (2006) 

.Note that the BKV result was taken from Pinol et al. (2006). The authors indicated that 

this work yielded new best results in some instances.  

Scatter Search Algorithm 

Scatter Search (SS) is a deterministic method that has been utilized successfully on 

several continuous and combinatorial optimization problems. SS was introduced for the 

first time by Glover (1977). As an evolutionary and population metaheuristic, SS 

recombines solutions taken from a reference set to create more solutions. Firstly, an 

initial population (Pop) that fulfils all the diversity and quality criteria is generated. 

Next, a reference set (RefSet) with a moderate population size is created by selecting 

good representative solutions from the population. The combination of the selected 

solutions is then used as the starting solutions for an S-metaheuristic based 

improvement procedure. Based on the results of the procedure, an update to the 



33 

 

 

 

 

reference set and even the population of solutions is carried out to include high-quality 

and diversified solutions. The process is iterated until the stopping criterion is fulfilled.  

Pinol et al. (2006) introduced two different heuristic techniques (scatter search 

and bionomic algorithm) for the s-ALP problems. These heuristic techniques were 

formerly used by researchers but have not been applied to ALP before this research. 

Mixed-integer zero-one formulation was used for the multiple runways s-ALP. The 

authors deployed the algorithms on about 500 aircraft and 5 runways. The results of the 

algorithm were compared with each other and with the result from FCFS. The results 

showed that the scatter search algorithm outperformed bionomic algorithm. 

Particle Swarm Optimization  

Particle swarm optimization (PSO) is another nature-inspired swarm intelligence 

algorithm which imitates the flock of birds (Eberhart & Kennedy 1995). In PSO, each 

candidate solution is represented by a particle, and the flock of particles moves in the 

search space to find the global optima. To direct the search to the optimum part in the 

search space, the swarm of particles is preserved during the search procedure, and the 

particles cooperate by sharing their archives among others. The particles move in multi-

dimensional search space with a specific velocity (v) and trail the recent best particles. 

Each particle changes its position according to its prior searching knowledge and that 

of other particles. The particles relocate their positions to the next positions with a 

velocity using particles fittest solution and global best solution values. The particles’ 

positions change depending the best positions found by the particle itself (pbest) and 

the best position found by the whole swarm (gbest). The algorithm performs local 

search with global search techniques to achieve well balanced exploitation and 

exploration. 

PSO algorithm with local search was proposed for s-ALP with multiple runway 

by Girish (2016). In the proposed algorithm, the authors separately dealt with single and 

multiple runways in the construction of the initial solution and the optimization process. 

Girish also proposed the rolling horizon (RH) framework, which represents an online 

optimization strategy. RH optimizes a problem for a fixed time horizon framework 
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based on the available information about the aircraft. The proposed approach was 

evaluated by comparing it with the following eight papers from the literature. (Awasthi 

et al., 2013; Bencheikh, et al., 2013; Sabar & Kendall, 2015; Salehipour et al., 2013; 

Xie et al., 2013; Yu et al., 2011: Zhou et al. 2018). The number of aircraft used ranged 

from 10 to 500 and the runways ranged from 1 to 5. The result of the proposed HPSO 

reflected the efficiency of the approach.  

Bat Algorithm  

Bat Algorithm (BA) is a population-based metaheuristic algorithm introduced by Yang 

(2010). It is based on the echolocation activity of bats in the natural world. Echolocation 

is the making of very loud sound waves and echoes to recognize where objects are in 

space. When sound waves sent by bats hit an object, they generate echoes, which return 

to the bat’s ears. Bats listen to the echoes to understand where the object is, its size and 

its character. Bats have this ability in the darkness. 

Bat Algorithm combined with local search was introduced for s-ALP with 

multiple runways (Xie et al., 2013). Hybrid Bat Algorithm (HBA) consists of the 

population-based algorithm BA and two local search algorithms. In this work, the 

solution representation has an important role in the improvement process. The purpose 

of the local search is to improve the global best solution. An improvement procedure 

was implemented by randomly selecting a runway from the solution, randomly selecting 

an aircraft on this runway, and assigning the selected aircraft to a different runway. This 

was done in one local search. Another improvement procedure was implemented by 

mutating the current global best solution to ensure the diversity of the population. The 

process was iterated until the termination criterion was met. The dataset used in this 

work ranged from 10 to 500 aircraft and 1 to 5 runways. The result obtained by HBA 

was compared with the results obtained by Pinol et al. (2006) and Bencheikh et al. 

(2011).  
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2.4.2 Approaches Applied to d-ALP on OR-Library Dataset 

Research works on d-ALP consider the scheduling of aircraft in the landing sequence 

when new aircraft appear over time, which requires that the landing of the previous 

aircraft should be rescheduled. In the next subsections, the research works on d-ALP 

are reviewed.  

a. Exact Method  

Beasley et al. (2004) proposed a new method named d-ALP, to solve ALP dynamically 

as a displacement problem. In d-ALP, the landing time of the aircraft is assigned while 

considering the time pass and change in the environment. While solving the 

displacement problem, new constraints or values may change during the process. This 

requires that a new decision must be made while taking the former decision into 

consideration. In d-ALP, a new data is added to the problem such as the appearance of 

a new aircraft or the landing of the new aircraft. The new schedule must have a back 

link to the previous one. Tree search method was used to dynamically generate the 

solution for ALP with multiple runways. Small and large datasets (up to 500 aircraft) 

were used in the experiment.   

b. Heuristic Method  

In Extremal Optimization (EO) dynamic single runway ALP (Moser & Hendtlass, 

2007), ALP is solved in two parts by finding the sequence of the aircraft and optimizing 

the landing time for the aircraft’ sequence. EO is an optimization technique which 

depends on the mutation operator to improve the solution. The landing sequence 

resulted from the EO solver used as input for the algorithm in the landing time 

assignment. There were 500 aircraft used in the experiment with a single runway. The 

result obtained was compared with the result from Beasley et al. (2004). 
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c. Metaheuristic Methods  

Bencheikh et al. (2016) proposed the ant colony optimization algorithm combined with 

the local search for solving ALPs in scenarios with dynamic multiple runways. In the 

d-ALP, new aircraft may appear as time passes. The proposed algorithm begins by 

initializing the ants constructively, starting with aircraft selection, runway allocation, 

and landing time assignment. The solution was represented following the bi-level graph. 

The graph starts with dummy nodes representing its input and output. Dataset instances 

used in the evaluation of the proposed algorithm ranged from 10 to 50 aircraft and 1 to 

4 runways (instances 1 to 8). The result of the proposed approach was compared with 

the result of Beasley et al. (2004).  

2.4.3 Research Works on ALP using Real-World Problems  

This section reviews the most common optimization techniques for ALP using real 

world datasets collected from airports. This review will also tackle the departure 

problem caused by the high similarity between the departing and landing aspects as an 

optimization problem. The review is summarized in Figure 2.7. 

Since the fifties, there have been attempts to improve the capacity of runways 

in airports by improving the management of air-traffic controller tasks. Atypical 

example can be found in the work by Blumstein (1959), where an analysis was carried 

out in the terminal area of the New York airport. This analysis proved the possibility of 

achieving significant improvements through the reduction of separation at the gate. 

Blumstein introduced an analytical model for determining the landing capacity for any 

single runway.  
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Figure 2.7 A summary of methods applied for s-ALP problem of real-world dataset 

Exact Method  Metaheuristic Methods  

Bonny (1967) 

Roger G. Dear (1976) 

(Venkatakrishnan et al. 993) 
(Bayen et al. 2004)  

(Eun et al. 2010)  

(Diallo et al. 2012)  
(Farhadi et al., 2014) 

(Murça & Müller 2015) 

(Samà, et al. 2017) 

 

 

Single based algorithms  Population based algorithms  

SA VNS 

(Bennell et al. 2017) 

(Rodríguez et al. 2017) 

(Dhouib, 2011) 

  

GA ACO 

(Ciesielski & Scerri, 1998).  

  

(Jiang et al. 2014) 

Methods Applied for s-ALP using Real-world Dataset  
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a. Exact methods  

Bonny (1967) introduced a computer-assisted sequencing for the task at Heathrow 

London airport. This is one of the most prominent works which established the use of 

computers in assisting the controller in the radar area. The system was deployed in the 

Royal Radar Establishment.  

Roger G. Dear (1976) stated that the performance of the decision makers in the 

control area would not be efficient enough and the maximum throughput will not be 

achieved by depending on the FCFS discipline. Thus, a new decision methodology was 

proposed in this work named Constrained Position Shifting (CPS). The idea behind this 

methodology ensures that aircraft do not shift away from the FCFS order. 

Venkatakrishnan et al. (1993) developed a statistical model to deal with ALP at 

Boston’s Logan Airport where two problems had emerged. The first problem was the 

large gap between the aircraft in the arrival stream while the second was the sequencing 

problem in the terminal area. The model developed in this work managed to tackle these 

problems by controlling the time interval between the arriving aircraft.  

Bayen et al. (2004) proposed a dynamic programming method to improve the 

spacing of arriving aircraft at the Dallas/Fort Worth International Airport. The problem 

studied is a little different from those presented in other research papers. The problem 

requires computing the maximum and minimum spacing for the landing aircraft. The 

result of this work was compared with the result of the Trajectory-Cantered Simulation 

method developed by NASA.  

Eun et al. (2010) proposed a branch-and-bound algorithm with linear 

programming (LP) and Lagrangian dual decomposition. Aircrafts were categorized as 

heavy, large and small to effectively formulate the problem while considering the safety 

time between the aircraft. The objective function is the total cost of all the delayed or 

advanced aircraft from their target landing time. The algorithm starts branching based 

on the tree search. The bounding of each branch was calculated using the linear 

programming-based mathematical formulation. The algorithm performance was 
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evaluated using real life data from Gimpo Airport (GMP) which is the biggest airport 

in South Korea. Results show that the proposed algorithm has significant computational 

performance, particularly for jammed airspace states. 

Diallo et al. (2012) used another exact method to schedule the arrival of aircraft. 

They considered a single runway using the mixed-integer 0-1 formulation. Akin to most 

previous works, the objective functions used were the minimization of the total delay 

of the holding aircraft and an assigned landing time very close to the target time. The 

proposed algorithm was evaluated using real life data from the Léopol Sédar Senghor 

(LSS) airport in Dakar, Senegal. The result was compared to the ASECNA system, 

which is used in the management of air traffic. The algorithm was able to maximize the 

throughput of the runway system, hence minimizing the cost of deviation from the target 

times.  

A recent empirical study was carried out to assess the runway capacity in AL-

Doha airport in Qatar (Farhadi et al., 2014). This study deployed another exact method, 

the Mixed-Integer formulation, for both landing and take-off operations. Three factors 

were considered to increase the runway capacity, namely the runway configuration, the 

scheduling approach, and the separation interval standard between the aircraft (see 

Figure 2.8). 

 

Figure 2.8 Runway capacity factors (Farhadi et al. 2014) 
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 The novel contribution in this study is the consideration of the runway 

configuration as another factor for increasing the runway’s capacity. This study also 

investigated the two-separation approach based on the rules of the Federal Aviation 

Administration (FAA) and the International Civil Aviation Organization (ICAO). In 

addition to the aforementioned investigations, single and two runway cases were also 

studied: the single runway case in Doha International Airport, DOH and two runway 

cases in Hamad International Airport, HIA. The Mixed-integer method was used to 

present the notation of the problem and the objective function was hinged on the total 

fuel cost resulting from the deviation of the aircraft from their target landing time. 

The result of the proposed approach indicated that fairness was achieved in the 

aircraft scheduling. It was also observed that shifting the FCFS sequence beyond two 

possessions at the Doha International Airport is not required. Additionally, the proposed 

approach yielded optimal or near-optimal solutions. This corresponds to a considerable 

optimization of fuel usage and decreased delay. The result also proved that international 

airports such as the Hamad International Airport can benefit more from using the FAA 

aircraft separation standard instead of the ICAO rules.   

Murça and Müller (2015) proposed another approach that is slightly different 

from other scheduling approaches (in which the arrival routes in the terminal are 

considered as the optimization factor). In this paper, a mixed integer linear 

programming model was proposed to consider the approach routes for scheduling and 

sequencing aircraft’ arrival. This means that the model governs the related discrete 

trades or time advances to substitute arrival routes and/or holding procedures that must 

be appointed to each aircraft to avoid a clash. The proposed approach aims to minimize 

the total delay in aircraft’ arrival in the trial area presented in Beasley et al. (2000) 

However, the formulation is different in terms of the objective function as this work 

focuses on the arrival routes. To evaluate the performance of the approach, real-world 

data was taken from the Sao Paulo/Guarulhos International Airport in Brazil. The results 

demonstrated that an optimal solution can be reached in reasonable time using the 

CPLEX solver, if the developed dynamic approach is executed in real-time situations. 

Moreover, the results proved that the delay can be reduced by 35% for situations close 

to the actual procedures of the Sao Paulo/Guarulhos International Airport. 
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An exact method based on the Mixed-Integer programming formulation was 

proposed for aircraft scheduling by Samà, et al. (2017). In this study, the trade-off 

between various performance indicators was investigated considering the safety 

constraints. The proposed model utilized real-life data from two Italian airports: Milano 

Malpensa and Roma Fiumicino. The result showed that the proposed approach 

outperformed FCFS solutions.  

b. Metaheuristic Methods  

The formulation of real-world ALP problems is a challenging task for the researchers 

using the metaheuristic algorithms. In the next subsections, the research works on ALP 

using metaheuristic algorithms and the real-world problems will be reviewed.  

Genetic Algorithm  

In 1998, an evolutionary approach based on genetic algorithm was introduced to solve 

the long computational time at Sydney Airport (Ciesielski & Scerri, 1998). The data 

was collected from the airport on the busiest day of the year. Two sets of data were 

generated: the first contained 28 aircraft arriving in 37 minutes while the second had 29 

aircraft arriving in 38 minutes. Standard binary GA and seeding GA versions were 

tested in the approach. The fitness function considered in this approach was contingent 

on the penalty of the solutions which occurs as result of invalidity, clashed aircraft, early 

aircraft, close proximity of aircraft, late aircraft, and adjacent or crossed aircraft. The 

ALP treats this as a rearrangement or permutation problem. According to the author, 

there are a number of drawbacks resulting from this approach such as invalid solutions 

generated in some runs, chromosome size problem, and long-time execution in the 

crossover and mutation operators. 

Ant Colony Optimization  

Jiang et al. (2014) proposed the ACO for ALP with two objective functions. The 

proposed approach was used to investigate the ability of the ACO algorithm to reduce 

the aircraft delay as well as achieving fairness among the airline companies. A real-life 
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dataset from a large airport in China was used for the performance evaluation. The result 

indicated a 42.22% reduction in delay time and 38.64% fairness among the airlines, 

based on the data used.  

Simulated Annealing  

Rodríguez et al. (2017) proposed the use of Simulated Annealing (SA) algorithm (which 

has a low computational time) for mixed-operation runway in order to minimize the 

delay in aircraft’ arrival and departure time. In addition to the safety constraints 

considered in solving the problem, Constrained Position Shifting restrictions were used 

to guarantee fairness between the aircraft schedules such that each aircraft can only shift 

to a limited position. The numerical data used in the performance evaluation of this 

algorithm was obtained from the London Gatwick airport. The result reflected the 

efficiency of the proposed approach in terms of computational time and reduction in the 

delays of aircraft in the holding area.  

 Bennell et al. (2017) proposed an optimization approach for s-ALP based on 

hybridization of algorithms. The approach was updated with rolling horizon approach 

for d-ALP. In this approach, multi-objectives take into consideration the runway 

throughput and fuel consumption. Dynamic programming, iterated descent and 

Simulated Annealing local search were utilized for the ALP. The proposed approach 

was evaluated using two types of data: a real-life dataset taken from Heathrow airport, 

and a randomly generated dataset. The result of the static problem indicates that the 

proposed approach could achieve a high throughput for the runway while minimizing 

the delay and fuel expenditure. For dynamic scheduling problem, the proposed approach 

performed efficiently with a lower computation cost. Overall, the computational results 

proved that the proposed algorithms can obtain better solutions than the FCFS result.    

Others Search Heuristic Approaches  

Beasley et al. (2001) investigated a population heuristic (PH) algorithm to improve the 

scheduling of aircraft waiting to land at London’s Heathrow Airport. Similar to GA, a 

population of solutions is represented by real numbers. Each individual consists of 
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early, target and latest landing time. The objective function of each individual is 

measured by the total deviation of aircraft in the individual from their target landing 

time (preferred time). The selection of parents in this algorithm employed a binary 

tournament selection mechanism, where two individuals are selected randomly from the 

population and the best fit will be chosen as the first parent. This procedure is repeated 

to get the second parent. The next step involves the application of crossover. In this 

step, a uniform crossover is implemented. The authors evaluated the PH algorithm using 

controller sequencing decisions with the minimum possible separation time. The result 

reflects the efficiency of the proposed algorithm in terms of computational speed and 

the effective schedule generated.  

A fast dynamic local search algorithm based on the job-shop scheduling 

technique was proposed by Bianco et al., (2006) for aircraft landing scheduling. The 

procedures discussed in the paper include the multiple runway and multiple approaches 

and leaving procedures. The constraints of the ALP are analysed carefully. The fast 

heuristic algorithm introduced in this work is also capable of dealing with some 

operational restrictions that produces, in real time, a new schedule each time a new 

aircraft enters the TMA for landing/departing. The proposed approach was tested using 

real data sets from Milan-Malpensa and Rome-Fiumicino airports. Results of the 

proposed approach showed a 40% reduction in delays and a 30% increase in capacity 

of the terminal area. 

Samà et al. (2015) proposed an optimization approach based on job-shop 

scheduling for landing and take-off scheduling problems. This work considered two 

objective functions which are to minimize the maximum delay of aircraft and the total 

travel time spent in the terminal control area. This paper is distinct in literature as it 

considers the route path of the aircraft in the terminal area as another factor for solving 

scheduling problems. For result evaluations, the authors obtained real world instances 

from the Roma Fiumicino airport (the largest airport in Italy). For comparison, the two 

objective functions were considered. CPLEX solver was used to compute the result to 

prove the performance of the approach.  
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Kepir et al. (2016) studied another aspect in the ALP by considering the aircraft 

fleet utilization and the waiting times of transfer passengers as two objectives for the 

AnadoluJet Turkish Airlines. The paper focused on finding balance in the trade-off 

between these two objectives. The authors proposed a mathematical model which was 

further extended to heuristic algorithm. This was to expand fleet utilization, decrease 

waiting times for most transfer travellers, and produce flight schedules that are 

subjected to numerous constraints. Both the objective function and the constraints of 

the problem were represented in the mathematical model. The result showed that the 

proposed approach obtained an optimal solution and reduced the scheduling time as 

compared to manual scheduling.  

Kapolke et al. (2016) proposed a pre-tactical optimization technique for runways 

where the arrival time of aircraft are uncertain. A unique approach which eliminates all 

irrelevant parameter was used in this paper. The mathematical representation of the 

problems was generated and the uncertainty of aircraft’ arrival was incorporated into 

the mathematical model. An important factor in the proposed model is that several 

aircraft can be assigned to the same time window which minimizes the problem’s 

complexity. The developed model was tested using real-life dataset taken from a large 

airport in Germany. Computational study showed that the proposed optimization model, 

with pre-knowledge about the uncertainty, could affect the performance of the entire 

model.  

Soykan and Rabadi (2016) proposed a hybrid metaheuristic algorithm with a 

simulation-based optimization (SbO) approach for multi-objective runway scheduling 

problem based on the Scatter Search (SS) algorithm. In the proposed approach, a greedy 

algorithm was used to generate the initial population and a reference set was then 

selected from the initial population. The proposed algorithm was evaluated based on 

real data taken from the Washington Dulles International Airport (IAD). In this data, 

the aircraft were categorized as heavy, large and small aircraft. The results of the 

computational experiments demonstrate that the use of an SS-based metaheuristic 

algorithm within a SbO framework is encouraging.  
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Samà, et al. (2017) proposed the hybridization of Tabu Search Algorithm and 

Variable Neighborhoods search which produces Variable Neighborhood Tabu Search 

(VNTS) for aircraft scheduling. The VNS algorithm was used to explore different 

neighborhoods in the search space while the TS algorithm was used to avoid cycling 

and escaping from the local optimum solution. The proposed algorithms were evaluated 

based on real-life dataset taken from the Milan Malpensa terminal control area (MXP). 

The overall performance of the proposed hybrid algorithm showed a fast computational 

performance; an effective minimization of the time required to obtain quality solutions; 

a better achievement in terms of solution quality and computation time, particularly for 

the hardest cases including disruptions; and the calculation of new best recognized 

solutions for some instances where the optimum solution are yet to be obtained.  

Apart from the above research works, several other studies have used different 

datasets. The static and dynamic cases of the problem as well as the optimization 

approaches were investigated. These works will be reviewed in the next subsection. 

2.4.4 Research Works on ALP using Other Datasets 

A number of researchers have used datasets other than those used in the previous 

subsections. In this subsection, a review of these papers is presented with an explanation 

of the data used. This is shown in Table 2.1.  

Table 2.1 Others ALP Dataset 

 

References  Technique  Dataset Source  

(Abela et al., 1995) GA Randomly generated  

(Cheng et al., 1999) GA Randomly generated 

(Caprì & Ignaccolo, 2004) GA  System aspects and optimization 

models in air traffic controller 

planning.  

(Bäuerle et al., 2006) Mathematical model 

proposed by author  

Randomly generated  

(Artiouchine et al., 2008) Mixed-Integer 

Programming (MIP) 

http://www.lix.polytechnique.fr/~ba

ptiste/flight_scheduling_data.zi 

  to be continued … 

http://www.lix.polytechnique.fr/~baptiste/flight_scheduling_data.zi
http://www.lix.polytechnique.fr/~baptiste/flight_scheduling_data.zi
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… continuation   

(Tang et al., 2008) Differential Evolution 

(DE) 

Randomly generated 

(Soomer & Franx, 2008) Local Search proposed by 

author + MIP 

Randomly generated 

(Hu & Di Paolo, 2008) GA Randomly generated 

(Zhan et al., 2010) Ant Colony Optimization 

(ACO) 

(Hu & Chen 2005) and (Hu & Di 

Paolo 2008) 

(Tavakkoli-Moghaddam et al., 

2012) 

fuzzy programming 

approach 

Randomly generated 

(Shidong et al., 2012) ACO  Randomly generated 

(H. Zheng et al., 2013) GA  (Hansen 2004) and (Pinol & Beasley 

1999) 

(Briskorn & Stolletz, 2014) Exact method developed 

by the author  

(Bianco et al. 1999) and (Beasley et 

al. 2000) 

(Ghoniem et al., 2015) Branch & bound 

Algorithm  

(Farhadi et al. 2014) and randomly 

generated data  

(Ghaith Rabadi, 2016) Tabu Search TS (Ghoniem et al. 2015) 

2.5  FINDINGS FROM LITERATURE REVIEW ON ALP RESEARCH WORKS 

In this subsection, the main findings from the literature review are discussed to highlight 

the challenges and weaknesses in the optimization algorithms used to solve the ALP. 

These challenges can be summarized in three main categories as follows: the 

convergence speed of the algorithm, the neighborhood structures followed to improve 

the current solution, and the adaption of algorithms to solve the d-ALP. Each challenge 

will be discussed in detail in the following subsubsections.    

2.5.1 Convergence Speed 

The convergence speed indicates the efficiency of an algorithm when used to solve an 

optimization problem. Solution construction forms an important step in solving a 

combinatorial optimization problem using metaheuristic algorithms. The convergence 

speed is affected by the solution construction procedure during the generation of the 

new solution (Rodríguez-Díaz et al., 2017). In ALP, the solution construction is 
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considered a critical task due to the rigid nature of the problem. This is because small 

changes in the solution component may lead to inefficient solutions when the 

construction is fully random (Bencheikh et al., 2009). This is as a result of limited 

resources such as limited number of available runways and the time window for landing. 

In solving an optimization problem using a metaheuristic algorithm, the algorithm 

generates new solution based on its nature. For example, in GA, the solution generation 

at each time depends on the crossover and mutation. The selection of the decision 

variable for these procedures (i.e., crossover and mutation) is accomplished randomly 

or using a heuristic procedure.  In other metaheuristic algorithm such as HSA, the 

procedure of generating a new solution (i.e., improvisation of a new solution) depends 

on HMCR and PAR procedures. These procedures are similar to crossover and mutation 

in GA. Therefore, the selection of the decision variables in HMCR is a critical step 

when dealing with a problem like ALP.  

The limitation in the standard HSA is that the pitch adjustment operator is 

mainly designed for mathematical and engineering optimization problems. In these 

problems, the examined decision variables’ values, that meet the PAR probability. are 

replaced by the neighbouring values by modifying the decision variable (Al-betar 

2010). Therefore, in ALP, a fully random selection of the decision variables may lead 

to slow convergence and a low-quality solution. Thus, an aircraft can be in conflict with 

another one during the course of generating the landing sequence or the landing time 

(Girish, 2016). The problem with solution construction in ALP is the selection of 

unfeasible decision variables during the construction of new solutions. Therefore, a 

guided procedure must be considered when generating a new solution to improve the 

convergence speed, avoid premature algorithmic convergence, and increase the solution 

quality. Guided procedure can improve the performance, and reduce the effort and time 

needed to obtain high-quality solutions and proper convergence speed.  

2.5.2  Neighborhood Structures  

One of the crucial factors in determining the efficiency of a metaheuristic is the 

neighborhood operators provided by the user. Note that the best alternative for a 

problem domain can only be formalized by an expert (Boussaïd et al., 2013). Also, the 


